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Goals

(1) Explore the mechanisms by which the MJO heating affects the
intraseasonal variability of the NAO through mechanistic GCM
experiments.

(2) Determine the systematic response of the extra-tropical atmosphere to
MJO heating using a model and experimental set up in which realistic
mid-latitude noise is present.
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Defining a mechanistic MJO response in the context of a full coupled GCM

The MJO heating is not a single localized source but a cycle in both space and
time, consisting of negative and positive anomalies.

From a linear point of view, both the heating and cooling at one particular time
may be thought of as sources for wave trains.

The remote response at any point some time later will involve the sum of these
wave trains, each having traveled a different distance to reach the given point
and thus in a different phase of its life cycle.

The dependence of the linear response to time-dependent forcing on the
entire past history of the forcing is well known in classical electrodynamics



Defining a mechanistic MJO response in the context of a full coupled GCM
Control CESM runs: 48 Oct-Mar seasonal runs

For each control run, a parallel heating run was made from the same IC,
with a specified MJO heating added at each time step to the temperature
tendency in the model. The evolution of the specified additional heating is
identical in each of the 48 heating simulations.

The full set of model parameterizations still operates, so that, for example, the
added heating is able to induce added vertical motion which may induce further
condensation, latent heat release, and changes in the associated cloudiness and
radiation.



The Specified Additional MJO heating

The three-dimensional heating is based on TRMM radar observations (shallow
to deep convection)

The observed climatology of heating for each month/day for each MJO phase
is taken into account (expected timing and amplitude)

The evolution of the additional heating spans slightly more than 3 full cycles of
the MJO, starting the first cycle with phase 5 (active in Indian Ocean) on 27
October and ending the last cycle with phase 6 (active in W. Pacific) on 15
April, for a total of 24 total phases
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Important points about the additional MJO heating
Full heating = additional MJO heating + model-generated heating

Model-generated heating varies across ensemble members (internal
variability)

Additional MJO heating fairly small compared with the total heating (about an
order of magnitude less)

Additional MJO heating ~ 0 — 1.5 K/day
Ensemble average of total heating ~ 0 — 15 K/day

(at 500 hPa, averaged 10S — 10N)



How to extract the “mechanistic mode”?

Added heating is identical for each calendar date and simulation: which mode is
similarly common for all simulations?

Predictable Component Analysis

* Also called “Signal-to-Noise Optimizing EOFs”

* Expand any field as a linear combination of “modes”, each with its own pattern
* Expansion coefficients (variates) depend on time and ensemble member (year)
 Maximize the “signal”/ ”"noise” ratio of the variates

* “Signal” = variance of ensemble means

* “Noise” = variance of deviations about ensemble means

* Modes ordered by signal-to-noise ratio (measured by F-value)
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reconstructed from the leading two optimal modes, averaged 25S-25N.



Patterns of two most
predictable (optimal)
modes for:
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200 hPa geopotential
height (top row)

300 hPa synoptic wave
geopotential height
tendency (middle row)

200 hPa Rossby wave
source (lower row)

Contour intervals are:
10 m (upper)

2 m/d (middle)

2 x1011s2? (bottom)




Cor(Opt mode 1 / Opt mode 2)
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Each mode
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oscillation of
about 30 days
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Lag correlation between the two most predictable (optimal) modes for 200 hPa geopotential
height (black), 300 hPa synoptic wave geopotential height tendency (red), 200 hPa Rossby
wave source (blue). and 300 hPa envelope of transient kinetic energy (dotted line).
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Time series of optimal modes
for 200 hPa height (black
curve), 300 hPa synoptic wave
height tendency (red curve),
Rossby wave source (blue
curve) and envelope transient
kinetic energy (dotted line).
Mode 1 (2) given in upper
(lower) panel. Time series
have unit variance. The
shaded field, identical in the
two panels, is the planetary
wave vertically integrated
heating synthesized from the
leading two optimal modes,
averaged between 255-25N,
Abscissa is time (1 to 181
days), with day 1
corresponding to 02 October.
Left ordinate refers to the
time series. Right ordinate is
longitude, from 0 to 180
degrees.
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Composites of 500 hPa height
(2500) for days in which the
circulation is assigned to one of
four clusters. Results from the
ERA-Interim reanalysis (winters
1980/81 - 2011/12) are given in
the left-hand column, those for
the heating simulations in the
right-hand column. Designations
of the four clusters, as well as
the percentage frequency of
occurrence, is given in the upper
left of each panel. In the right-
hand panel, the corresponding
frequency of occurrence for the
control simulations is given in
the lower left of each panel, in
parenthesis. The contour
interval is 20 m
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Number of occurrences of NAO+
regime (red curve) and NAO-
regime (green curve) in all
ensemble members, as a function
of day (see left-hand scale). Shading
in top panels is the vertically
integrated planetary wave diabatic
heating synthesized from the
leading two most predictable
modes, in W/m?(see color bar) as a
function of longitude (see right
hand scale). Dotted (solid) curve in
bottom pan is the ensemble
averaged time series of the first
(second) most predictable mode
(see right hand scale). Time series
are normalized to unit variance.
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Conclusions

The MJO cycle of heating and cooling leads to a systematic cycle of forced
response in the PNA region

The cycle of response in the Atlantic is mediated by high-frequency barotropic
transients

The MJO has an impact on the frequency of occurrence of NAO clusters

Some Unanswered Questions

What is the role barotropic instability? Does it contribute to the signal or the
“noise”

Does the signal to noise ratio depend dramatically on the model used?

To what extent would a “very good” prediction of MJO tropical convection 2-4
weeks in advance be associated with dramatically improved extra-tropical
predictions? (i.e. what is the signal-to-noise ratio in nature?)
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(a) Signal of 200 hPa height, given as the square root of the variance of daily ensemble
means . (b) Square root of the mean daily intra-ensemble variance. Contour interval =
20 m. Grid lines drawn every 10 degrees in latitude from 20N to 80N
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Role of transients diagnosed via high-frequency vorticity flux convergence

02 [P _ foa( oum
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£=Vy
(primes denote 2-10 day time scale filtered fields)

Encompasses both

e Extraction of kinetic energy from the mean flow (as in slow barotropic
instability modes of SWB)

e Effects of the corresponding momentum fluxes in forcing the jets (Rossby wave
breaking)
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Synthesis of leading two most predictable components at selected times for Z200 (top row), 300
hPa height tendency from synoptic scale vorticity flux (middle row), and 200 hPa Rossby wave
source (contours) and ensemble averaged diabatic heating (shaded), bottom row. Contour is 10

m for Z200, 2.5 m/d for height tendency, and 5 x10''s"! for Rossby wave source. .



